## SigmaStudio Filter Coefficient Calculations

This document shows how to calculate B0, B1, B2, A1, and A2 for various IIR filter types in SigmaStudio.
Sin = sine, Cos = cosine, Tan = tangent, Sinh = hyperbolic sine, Log = base 10 logarithm

## Parametric EQ Calculation

Values from Control:

```
boost (boost of filter)
frequency (center frequency)
Q (Q of filter; must be greater than or equal to 0.01)
gain (linear gain applied to the signal)
Fs (sample rate of project)
```

```
In the case that boost = 0,
    gainlinear = 10(gain/20)
    B0 = gainlinear
    B1 = 0
    B2 = 0
    A1 = 0
    A2 = 0
If boost is not 0,
    Create 5 new variables: a0, omega, sn, cs, alpha, Ax
    Ax = 10 (boost/40)
    omega = 2 * PI * frequency / Fs
    sn = Sin(omega)
    cs = Cos(omega)
    alpha = sn / (2 * (Q))
    a0 = 1 + (alpha / Ax)
    A1 = -( 2 * cs) / a0
    A2 = (1 - (alpha / Ax)) / a0
    gainlinear = 10 (gain/20)}/\textrm{a}
    B0 = (1 + (alpha * Ax)) * gainlinear
    B1 = -( 2 * cs) * gainlinear
    B2 = (1 - (alpha * Ax)) * gainlinear
```


## Tone Control

Values from Control:

Freq_T (treble cutoff frequency)
Boost_T (treble boost)
Freq_B (bass cutoff frequency)
Boost_B (bass boost)
Fs (sample rate of project)

```
Boost_T \(=10^{(\text {Boost_T / 20) }}\)
Boost_B \(=10^{(\text {Boost_B } / 20)}\)
A_T = Tan(PI * Freq_T / Fs)
A_B \(=\operatorname{Tan}(P I *\) Freq_B / Fs)
Knum_T = \(2 /(1+(1 /\) Boost_T))
Kden_T = \(2 /(1+\) Boost_T)
Knum_B = 2 / (1 + (1 / Boost_B))
Kden_B = 2 / (1 + Boost_B)
\(\mathrm{a} 10=\mathrm{A}_{-} \mathrm{T}+\mathrm{Kden} \mathrm{T} \quad \mathrm{b} 10=\mathrm{A}_{-} \mathrm{T}+\) Knum_T \(^{\mathrm{T}}\)
a11 = A_T - Kden_T b11 = A_T - Knum_T
a20 = (A_B * Kden_B) + \(1 \quad\) b20 = (A_B * Knum_B) - 1
\(a 21=\left(A \_B * K d e n \_B\right)-1 \quad b 21=\left(A \_B * K n u m \_B\right)+1\)
a0 = a10 * a20
A1 = ((a10 * a21) + (a11 * a20)) / a0
A2 = a11 * a21
                                    / a0
gainlinear \(=10^{(\text {cell_gain / 20) }}\)
B0 = (b10 * b20) / a0 * gainlinear
\(\mathrm{B} 1=((\mathrm{b} 10\) * b21) \(+(\mathrm{b} 11\) * b20)) / a0 * gainlinear
B2 = (b11 * b21) / a0 * gainlinear
```

For double 1st Order Filter cells, simply use 2 Cascaded $1^{\text {st }}$ Order Filters

## All Pass

Values from control:
frequency (center frequency)
Q (Q of filter)
gain1 (linear gain)
fs (sample rate of project)

```
gain1 \(=10^{(\text {gain / 20) }}\)
omega \(=2\) * PI * frequency / fs
sins = Sin(omega)
coss = Cos(omega)
alpha = sins / (2 * Q)
norm \(=1+\) alpha
B0 = gain1 * (1 - alpha) / norm
B1 = gain1 * ( \(-2{ }^{*}\) coss) / norm
B2 = gain1 * (1 + alpha) / norm
A1 \(=-2{ }^{*}\) coss / norm
A2 = (1 - alpha) / norm
```


## Notch Filter

Values from control:
frequency1 (center frequency)
Q (Q of filter)
g (gain)
fs (sample rate of project)

```
omega = frequency1 * 2 * System.PI / fs
deltaomega = omega / Q
b = 1 / (1 + Tan(deltaomega / 2))
gain = 10 (g/20)
B0 = gain * b
B1 = gain * ( - 2 * b * Cos(omega))
B2 = gain * b
A1 = - 2 * b * Cos(omega)
A2 = (2 * b - 1)
```

Values from control:
frequency (cutoff frequency; must be 1 Hz or greater)
gain (linear gain)
ripple (ripple of filter; must be 0.1 or greater)
Fs (sample rate of project)

```
wp \(=(2\) * PI * frequency) / Fs
Omegap = Tan(wp / 2)
epass \(=\left(10^{(0.1 * \text { ripple })}-1\right)^{0.5}\)
alpha \(=(0.5) * \log \left(1 /\right.\) epass \(+\left(1 /\left(\text { epass }^{2}+1\right)\right)^{0.5}\)
Omega0 \(=\) Omegap \(* \operatorname{Sinh}(a l p h a)\);
theta \(=(\) PI / 4) \(* 3\)
Omega1 = Omegap * Sin(theta)
\(\mathrm{H} 0=\left(1 /\left(1+\text { epass }^{2}\right)\right)^{0.5}\)
Den \(=1-(2 *\) Omega0 \(* \operatorname{Cos}(\) theta \())+\) Omega \(^{2}+\) Omega1 \(^{2}\)
\(\mathrm{G}=\left(\mathrm{Omega}^{2}+\right.\) Omega1 \(\left.^{2}\right) /\) Den
A1 \(=\left(2^{*}\left(\right.\right.\) Omega \(^{2}+\) Omega1 \(\left.\left.^{2}-1\right)\right) /\) Den
\(\mathrm{A} 2=\left(1+(2 *\right.\) Omega0 \(* \operatorname{Cos}(\) theta \())+\) Omega \(^{2}+\) Omega1 \(\left.^{2}\right) /\) Den
\(\mathrm{B} 0=\mathrm{H} 0 * \mathrm{G} * 10^{(\mathrm{gain} / 20)}\)
\(\mathrm{B} 1=\mathrm{B} 0 * 2\)
\(B 2=B 0\)
```


## ChebyshevHighPass

Values from control:
frequency (cutoff frequency; must be 1 Hz or greater)
gain (linear gain)
ripple (ripple of filter; must be 0.1 or greater)
Fs (sample rate of project)

```
wp = (2 * PI * frequency) / Fs
Omegap = 1 / Tan(wp / 2)
epass \(=\left(10^{(\theta .1 * \text { ripple })}-1\right)^{0.5}\)
alpha \(=(0.5) * \log \left(1 / \text { epass }+\left(1 /\left(\text { epass }^{2}\right)+1\right)\right)^{0.5}\)
Omega0 = Omegap * Sinh(alpha)
theta = (PI / 4) * 3
Omega1 = Omegap * Sin(theta)
H0 \(=\left(1 /\left(1+\left(\text { epass }^{2}\right)\right)\right)^{0.5}\)
Den \(=1-2\) * Omega0 * Cos(theta) + (Omega0 \(\left.{ }^{2}\right)+\left(O_{m e g a 1}{ }^{2}\right)\)
\(\mathrm{G}=\left(\left(\mathrm{Omega}^{2}\right)+\left(O m e g a 1^{2}\right)\right) /\) Den
A1 \(=\left(-2 *\left(\left(\right.\right.\right.\) Omega日 \(\left.\left.\left.^{2}\right)+\left(O m e g a 1^{2}\right)-1\right)\right) / D e n\)
\(\mathrm{A} 2=\left(1+2 *\right.\) Omega0 \(* \operatorname{Cos}(\) theta \()+\left(0\right.\) mega0 \(\left.{ }^{2}\right)+\left(\right.\) Omega1 \(\left.\left.^{2}\right)\right) /\) Den
\(\mathrm{BO}=\mathrm{H} 0 * \mathrm{G} *\left(10^{(\mathrm{gain} / 20)}\right)\)
\(\mathrm{B} 1=-\mathrm{B} 0\) * 2
\(B 2=B 0\)
```

Linkwitz-Riley - $12 \mathrm{~dB} /$ oct $=2$ cascaded 1st order butterworths (2 biquads)
frequency (the cutoff frequency)
First Order type (the type of filter, can be lowpass, highpass, or allpass)
g (the linear gain)
fs (the sample rate of the project)

```
    1 st Order Butterworth
gain = (10 (g/20)}
omega, sn, cs, alpha, a0
omega = 2 * PI * frequency / fs
sn = Sin(omega)
cs = Cos(omega)
a0 = sn + cs + 1;
For a First Order lowpass...
```

```
    A1 = (sn - cs - 1) / a0
    B0 = gain * sn / a0
    B1 = gain * sn / a0
```

For a First Order highpass...
A1 = (sn - cs - 1) / a0
$\mathrm{B} 0=$ gain $*(1+\mathrm{cs}) / \mathrm{a} 0$
$\mathrm{B} 1=-$ gain $^{*}(1+\mathrm{cs}) / \mathrm{a} 0$
For a First Order allpass...
$\mathrm{A} 1=\left(2.7^{(-2 * \mathrm{PI} * \text { frequency } / \mathrm{fs})}\right)$
$B 0=-$ gain * A1
B1 = gain

Linkwitz-Riley - $24 \mathrm{~dB} /$ oct $=2$ cascaded 2 nd order butterworths (2 biquads)
frequency (the cutoff frequency)
gain (the linear gain)
Fs (the sample rate of the project)

```
2 nd Order LOWPASS
omega, sn, cs, alpha, a0;
omega = 2 * PI * frequency / Fs
sn = Sin(omega)
cs = Cos(omega)
alpha = sn / (2 * (1 / (2) 0.5})
a0 = 1 + alpha
A1 = -( 2 * cs) / a0
A2 = (1 - alpha) / a0
B1 = (1 - cs) / a0 * (10 (gain/20)}
B0 = B1 / 2
B2 = B0
```

```
2 nd Order HIGHPASS
omega = 2 * PI * frequency / Fs
sn = Sin(omega)
cs = Cos(omega)
alpha = sn / (2 * (1 / (2) 0.5})
a0 = 1 + alpha
A1 = -( 2 * cs) / a0
A2 = (1 - alpha) / a0
B1 = -( 1 + Cs) / a0 * (10 (gain/20)}
B0 = - B1 / 2
B2 = B0
```

Linkwitz-Riley - 36 dB/oct = 2 cascaded 3rd order butterworths
3rd order butterworth is implemented by cascading a "HigherOrder" + 1st order
$1^{\text {st }}$ Filter: [HigherOrder] orderindex $=3$, $\mathbf{i}=0$
$2^{\text {nd }}$ Filter: 1st Order Butterworth
$3^{\text {rd }}$ Filter: [HigherOrder] orderindex $=3$, $i=0$
$4^{\text {th }}$ Filter: 1st order Butterworth
frequency (the cutoff frequency)
gain (the linear gain)
Fs (the sample rate of the project)
orderindex (described above... changes based on type)
i (described above)

```
    LOW PASS HIGHER ORDER
omega, sn, cs, alpha, a0 , orderangle
omega = 2 * PI * frequency / Fs
sn = Sin(omega)
cs = Cos(omega)
    orderangle = (PI / orderindex) * (i + 0.5)
alpha = sn / (2 * (1 / (2 * Sin(orderangle))))
a0 = 1 + alpha
A1 = -( 2 * cs) / a0
A2 = (1 - alpha) / a0
B1 = (1 - cs) / a0 * (10 (gain / 20)}
B0 = B1 / 2
B2 = B0
```


## HIGH PASS HIGHER ORDER

        omega \(=2\) * PI * frequency / Fs
        sn \(=\operatorname{Sin}\) (omega)
        cs \(=\operatorname{Cos}(\) omega)
    orderangle \(=(\) PI \(/\) orderindex) \(*(i+0.5)\)
    alpha \(=\operatorname{sn} /(2 *(1 /(2 * \operatorname{Sin}(o r d e r a n g l e))))\)
        a0 = \(1+\) alpha
        A1 \(=-\left(2^{*} \mathrm{cs}\right) / \mathrm{a} 0\)
        A2 = (1 - alpha) / a0
        B1 \(=-(1+\mathrm{CS}) / \mathrm{a} 0\) * \(\left(10^{(\mathrm{gain} / 20)}\right)\)
        \(\mathrm{B} 0=-\mathrm{B} 1 / 2\)
        \(B 2=B 0\)
    Linkwitz-Riley - $48 \mathrm{~dB} /$ oct $=2$ cascaded 4 th order butterworths
4th order butterworth is implemented by cascading 2 2nd "Higher Order" using equations shown above.
$1^{\text {st }}$ Filter: orderindex $=4, i=0$
$2^{\text {nd }}$ Filter: orderindex $=4, i=1$
$3^{\text {rd }}$ Filter: orderindex $=4$, $i=0$
$4^{\text {th }}$ Filter: orderindex $=4$, $\mathbf{i}=1$

## Butterworth $12 \mathrm{~dB} /$ oct = One $\mathbf{2}^{\text {nd }}$ order butterworth

## Butterworth $18 \mathrm{~dB} /$ oct = One Higher order butterworth + One $1^{\text {st }}$ Order

Filt 1: [HigherOrder]: orderindex $=3, i=0$
Filt 2: $1^{\text {st }}$ Order butterworth

Butterworth $\mathbf{2 4 ~ d B / o c t = \mathbf { 2 }}$ Higher order butterworths
Filt 1: orderindex $=4, i=0$
Filt 2: orderindex $=4, i=1$
Bessel $12 \mathrm{~dB} /$ oct $=$ One $2^{\text {nd }}$ order Bessel
frequency,
gain,
Fs
Low Pass Bessel

```
omega, sn, cs, alpha, a0
omega = 2 * PI * frequency / Fs
sn = Sin(omega)
cs = Cos(omega)
alpha = sn / (2 * (1 / (3) 0.5})
a0 = 1 + alpha
A1 = -( 2 * cs) / a0
A2 = (1 - alpha) / a0
B1 = (1 - cs) / a0 * (10 (gain / 20)}
B0 = B1 / 2
B2 = B0
```

High Pass Bessel

```
omega = 2 * PI * frequency / Fs
sn = Sin(omega)
cs = Cos(omega)
alpha = sn / (2 * (1 / (3) 0.5})
a0 = 1 + alpha
A1 = -( 2 * cs) / a0
A2 = (1 - alpha) / a0
B1 = -( 1 + CS) / a0 * (10 (gain/20)}
B0 = - B1 / 2
B2 = B0
```

Bessel $18 \mathrm{~dB} /$ oct $=$ one $\mathbf{2}^{\text {nd }}$ order Bessel + One $1^{\text {st }}$ order Butterworth

Bessel $\mathbf{2 4 ~ d B / o c t ~ = ~ T w o ~} 2^{\text {nd }}$ order Besels

